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ABSTRACT

A creep-rupture investigation was conducted on two (2) high temperature

alloys: a nickel-base ae hardened alloy, Udimet 500, and a cobalt-base

alloy, L-605. Creep-rupttu a tests were conducted over a range of rupt re

lives from 1 - 35,000 hours at 1200, 1350, 1500, 1650 and 18000 F. Some

long time tests are in progress ana lives of approximately 50,000 hours

are expected.

The microstructure of all broken sp cimens was examined with various

techniques and an attempt was made to correlat3 specific structural changes

with the mechanical properties.

Several different parameter techniques were examined to determine their

utility in correlating and extrapolating creep and rupture Wta.

The strength and the J mitations of rirametric extrapolation was extensively

discussed with the example of dhe Manson-Haford parameter for ,vhich M

computer program was available.
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I. INTRODUCTION

The ability to predict long time strength and deformation properties of

metals at elevated temperatures has been strived for as long as this

kind of engineering requirement has existed. Today the need to design

efficient structures for tens of thousands of hours' life utilizing the most

advanced alloys creates increased demands on extrapolation methods.

For the present investigation two (2) typical high temperature alloys --

Udimet 500, a nickel-base alloy and L-605, a cobalt-base alloy -- were

selected because they are representative of commonly used high temperature

alloys. The objective of the study is the appraisal of various techniques

for the extrapolation of creep and rupture data to times in excess of

30,000 hours.

For obvious reasons one would like to avoid long time testing. For

many years engineers have used graphical methods to predict long time

properties: The most wlde17 used technique is the straight line

extrapolation on a double logarithmic plot of stress Yersus time. On

the other hand, various time-temperature parameters have been ',sed.

Such a relationship between stress, temperature and time for rupture

(or a given amount ,f creep deformation) can be regarded either strictly

as a mathematical tool or else fron, a point of vie% of its metallurgical

interpretation. In the first case, one would simply attempt to arrange

data points in such a way that they permit extension of th( experimental

range. In the second case, one assumes that what occurs in a long

time at a low temperature will occur in a shorter time at a higher temperature.

However, if this equivalence is used in the derivation of parametric

expressions, the physics of the relation must be properly understood.

I
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In the present investigation test data are being collected covering

conditions of both short time and long time tests. The problem to be

solved here is, therefore, one of interpolation of data points.

In addition, an attempt is made to combine and arrange data points

in a metallurgically meaningful way. This is done by the structural

analysis of all test specimens.

A further qur stion to be considered is the reliability of test data and

in particular long time rupture and creep data. A good picture of the

scatter has been obtained for short time tests; however, the

experimental evaluation of scatter at long times would be quite an

undertaking.

2
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II. RESULTS ANQ DISCUSSIONS

1. Long Time Creep Tests

Long time creep tests were continued for both Udimet 500 and L-605 at

1200 and 15000 F. The stresses were chosen on the basis of short

time rupture data and an attempt was made to arrive at rupture lives

between 10,000 and 50,000 hours. So far test times up to 35,000

hours have been reached.

The results are summarized lit TABLE I which includes both data on

ruptured specimens and tests in progress. In Figures 1 - 10, the

stress-rupture and creep properties are graphically represented.

Whereas the stress-rupture curves fall rather consLstently on straight

lines on a log strets-log time plot, the creep data show more scatter.

Nevertheless, this simple graphical method can at least give good

.ulde lines as to the expected times for a given amount of deformation.

Stress rupture properties of both L-605 and Udimet 500 can be

extrapolated graphically with good accuracy using the 1200 and 15000 '

stress rupture curves. The reliability of this approach will be discussed

in some detail in another section of this report.

Figures 11 - 14 include the creep curves of the long time tests at 1200

and 15000 F. The two materials exhibit very different plastic behaviors:

Udlmet 500 shows no primary creep and very little secondary creep. The

material deforms very slowly at the heginning of the test and the creep

rate gradually increases until hz1vur•'t. This type of time - deformation

characteristic is quite typical fo• th'r alloy (and most age-hardened

nickel-base alloys) under any condititF,-A of temperature and stress.

3



L-605 on the other hand exhibits a substantial amount of primary creep

under all conditions. As can be seen in some cf the long tWne curves,

secondary creep may be reached only after 15,000 hours . AgaL,, •tis

type of behavior is characteristic for a group of cobalt-base alloys of

this type. The different creep behaviors of the two alloys is also

illustrated by the plots of log stress versus log time for a given small

amount of plastic deformation. Whereas the Udimet 500 points for 0. 1%,

0.5% and 1% creep fall rather~nicely on straight lines (Figures 3, 4, 5),

the same is not true for the L-605 data (see Figures 8, 9, 10). In te

latter case, these small amounts of plastic deformation are all taken up by

primary creep, which apparently is much more prone to scatter.

2. Structur.l Observations During Lonq Time Creep ixp'osure

The structure of all broken npecimens was examined on longitudinal

sections with both electron and light microscopy. Pictures were taken

at magnifications of 1000X and 1500OX. The conditions for the preparation

of the sample surfaces are given in Table II. Emphasis was placed on

observations indicating a change in micro-constituents, appearance of

grain boundaries and crack initiation. It is thought that extrapolation

methods of any kind can only be applied rigorously if the structures, as

well as deformation and fracture mechanisms, are the same within the

range of extrapolation.

a. Udimet 500

The microstructural constituents of this alloy consist merely of a fl-.9

dispersion of the f' precipitate in the nickel-base matrix. Some chromium

carbide is present in the grain boudaries. During creep exposure at

1200* F, hardly any changes take place: The Y' particles have the same

size over the whole range of test time (up to 18,000 hours). No agglomera-

tion of the chromium carbide particles can be noted. Cracking occurs along

the grain bound'ries. (See FLgures 15 - 28,)

4



,At 15000 F growth of both the 1" and th-R grain boundary carbides can

be rioticed. The observations are stur.mazized in TABLE IMI. Ihis growth

ata-ts with test times in excess of a few hundred hoLrs ,r1d is very

marked after a few thcas',nd hours.

All cracking occurs along grain-boundaries, (See Figures 29 - 43)

b. L-605

In the as received condition L-605 is a single phase alloy (See Figure 44)

but precipitatCon starts in the grains and on giain boundaries with very

ahort test timss and at a temperature as low as 12000 . (Figures 45 - 58).

The grain precipitate can be found mostly in twin planes and along specific

crya.allogTaphic planes.

At 1500 F, precipitation of second phase particles 'tar~s with very short

test times in both grains and grain-boundaries. With test durations over

100 hours, the second phase particles agglomeraie rapidly. An analysis

of the electrolytically separated residue shows that both Co 2W and carbides

of the IA6 C type are present. (See Figures 59 - 70).

Under ýll conditions, cracklnc occurred along grain-boundaries.

(Further comments on structural observal,4.ons will be found in the fVllowing

paragraph.)

S



3. Extrapolation of Stress Rupture and Creep Data by
Parameter Techniques

a. General Considerations

With the exception of graphical methods, all extrapolation techniques

attempt to define* in mathematical terms, a general description of the

variation of creep strength (rupture or specific amount of plastic

deformation) with stress and temperature. This is then specialized

for a particular material by using relatively short time data to generate

values for the constants and parameters, and the specialized equation

is then used to predict the long time properties of the material. This

concept is based on the assumption that all creep-rupture or creep-

deformat'on data for a given material can be correlated to produce a

single "master-curve" wherein the stress (or log stress) is plotted

agbinst a parameter involving a combination of time and temperature.

Extrapolation to long times can then be obtained from this curve, which

can presumably be constructed by using only short-time data. It iik of

great importance to know how many tests have to be run and the minimum

test times required to obtain a reliable master curve.

The most widely used extrapolation techniques utilize a time-temperature

parameter based on a rate equation of the type

rate = Ao exp (-B/1)

In terms of creep rupture properties this becomes:

tr= A, exp, (BI/7)

where T is the absolute temperaturj, tr the rupture time and A, and B1

are constants for a given stress. In different techniques various

assumptions are made regarding the variation of these constants with

stress.

6



If we put the last equon in logarithnic form, we arrive at the Larson-
Miller parameter (Ref. 2).

Pt= f (6g) =T +K1)

where P is the parameter and K a constant.t K

If on the other hand we suppose that B is a constant and A1 varies with

stress, we have

f= f (6") = tr exp (Bl/Tj

which is in essence the Dorn parameter (Ref. 5.

The Manson-Haford parameter (Ref. 4) departs somewhat from the other

parameters in that the iso-saress lines in a plot of log tr versus T are

assumed to be linear and to intersect at log ta and Ta. One arrives then

at the following form:

Pf(W)f T-Ta

log tr - log ta

If on the other hand the iso-stress lines appear to >e parallel, the

parameter is of the form:

l=Iog tr - ST (S = constant)

A further advance in the practical application of parametric methods was

the devel pment of an objective least-squares method for the determination

of optimum values of the constants and thus avoiding the use of the

judgment on the part of the analyst.

7



b. Parametric Presentation of Creep and Rupture Data

All available data for rupture life and time for 1, 0.5 and 0.1% creep were

evaluated and plotted with the various parametric techniques. (For a complete

listing of all the short time test results see Reference 1.) The test temperatures

included 1200, 1350, 1500, 1650 and 18000 F. A computer program was

available for only the Manson-Haford parameter for an objective evaluation

of the data points. * For this reason and also because the same important

conclusions can be made on the basis of several of the paranietric plots, only

the Manson-Haford plots were used for tŽhe following discussion.

With the aid of the computer program (Fortran IV) creep deformation and

stress-rupture results were processed "i the following way:

(1) Data for time to rupture as well as time to 0.1, 0.5 and

1% creep were used throughout the evaluation.

(2) Several arbitrary cut-off points in test time were chosen,

namely, 200, 1000 and 10,000 hours. Test results were then l5rocessed with

the assumption that only results up to the particular test time were available.

In addition, sets of data with all available test results (including all long time

tests) were processed.

(3) The constants for the linear Menson-Haford parameter

were then determined with the aid of the computer program. For the deter-

mination of the optimum values the least-squares method was used.

(4) For those cases for which the value of Ta in the linear

Manson-Haford parameter as less than -3000, a modified parameter X was

used ( 9 = log t - ST). The choice of this parameter would indicate that

iso-stress lines are parallel on a temperature versus log time plot.

* The authors are indebted to the Lewis Research Centez for the processing

of the data; our thanks go in particular to Messrs. S. S. Manscn,

A. Mendelson and E. Roberts.
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(5) In &11 t,e plots data points for long thie tests were

put in. These added test results had not been used for the original determination

of the constants of a particular plot, but the value of the parameter of those

results was determined using those same constants. The deviation of the long

time data points from the general course of the master curve gives an indication

of the reliability of the extrapolation.

(6) The plots which include all data points give an indication

of the reliability of interpolation within the complete test time span.

A summary of the parameters and the constants is given in TABLES IV and V for

all the groups of data processed. It shows that the standard linear parameter

was used for all the creep results except for 0.1% plastic strain in L-605 where

the "parallel lines" parameter X - log t - ST was more suitable. Also, all

rupture results were presented on the basis of the second of the two parameters.

A discussion of the individual plots (Figures 71 - 98) is most conveniently

done in treating the two materials separately.

Udimet 500 (See Figures 71 - 85)

The major conclusions that can be drawn on the basis of the rupture plots are

the following:

(1) Within the temperature range of 1200 - 1650* F

extrapolation with the aid of a temperature/time parameter is as accurate as

the reproducibility of tests under identical conditions of temperature ana Atress.

(2) ExtrapolaM,•n on the basis of 200 hours test time is

definitely less reliable than extrapolation with data points up to 1000 or

10,000 hours. (The same can be found on the basis of the change of constant S.)

(3) 18000 F data should definitely not be used for extrapolation

purposes as the reproducibility is very poor at this temperature. At all lower

temperatures Udimet 500 has a rather stable structure with a fine dispersion

of the 1' precipitate, whereas at higher temperatures agglomeration can

occur in an unpredictable manner which causes variable crock progress and,

therefore, wide scatter in rupture data. (See also Figures 15 - 43)

9



The 1% and 0.5% creep data fall all on ratier smooth cuives which would

indicatc that creep (other than fracture) sl less structure sensitive wili -his

type of an ailcy. Thbe plots indicate that extrapolation to long time data

poi~nts is possible sv-ýn with only zhort time data (200 hours) on haind. It

shculd be noted, however, thIat the stress versus parameter curt es based on

200 houirs data are crather steep, which mcins that a small change in stress

does not result il much of a change In the value of the parameter. This, of

rcourse, weakens thl value of the extray)lation. Tn all cases th' long time

data points !all well within the general scatter band of the rest of -the data

points,

The picture looks s ýiwwhat different with the 0. 1% creep datae the general

sctt 'r of aL iosults is considerably increa Jed, but amazingly, the rellability

of extrapolation does not seem to increase with longer time test data: the

constants lof 7A aild TA do not ch,-nge with the different sets of data points.

Lý 605 (See F1.guies 66 - 98)

The following observations clan be made on the basis of the rupture data points,

(1) The basis for the extrapolation does not change much with

ýnceaesing test time.

(2) The reproducibility of results Is generally better with

higher tepF•.rature.

(3) A kink in. the mastr curve around a value of 16

confirms the e'ge-hardenlng effetct o. the precipihate observed in the micro-

staucture. This precipttation was observed with long time tests at low

t3mperatures and shorter times at internediate temperatures. Within that

range of test conditions Lhe accuracy of a vpf.1%r6 life prediction lo very poor,

as ca, be seen in Figures 86 - 89.

Extrapolation of 1% plastic st-ain a' high temperntures uan be quite ..eliable,

provid'ed the master curve is determined on the basis of testf, up to 1000 hours.

""olow 15•00* F, but particularly at 1 J50 and 1200 0 F, the scatter is consider-ble

due to the same strictlral instability mentioned ir the discussion )'f the rupture

Sdata. It is, 1herefore, very difficult to extrapolate long time data for this low

temperature rmge.

10



the possosany real long time data for these small amounts Uf creep.

Thelog tmecreep cre hwcexyta pcmnwt ieepcac

d g itearllie time. It is,, therefore, very difficult to establish a basis

for the extrapolation of long time data for very small amounts of creep.

deformation pattern of the alloy includes a considerable amount of primary
creep*

. .

4- 4

" ~.11

4 .



IIl. SUMMARY AND CONgLUSIONS

The present evaluation of extrapolation techniques applied to creep and

rupture data of two (2) superalloys leads to a number of Impo tant observations:

(1) Extrapolation with the aid of a time/tempexature parameter

can be as accurate and reliable as other methods (such as graphicI'.;

extrapolation), provided one knows the bebavior of the material in question

and, therefore, is well aware of specific restrictions in the range of

applicability of the parametric techniques. This would preclude that fairly

long time testz have to be conducted over the whole temperature range for a

given type of a material if extrapolation to long time data is desired.

(2) A more severe restriction to the accuracy of extrapolation

is caused by a lack of reproducibility of data points even within one lot of a

given material. The scatter in test data varies with alloys and conditions,

particularly test temperature. It turns out that the uncertainty in extrapolation

caused by , lack of reproducibility of a data poiut can be as severe as the

ýucertainty caused by a change in test temperature.

(3) The results show that iik-areased accuracy in extrapoiation

can be obtained by basing the determinationt of a parameter master curve on

longer time tests. In most instances 1000 hours appear to be a reasonable

cut-off time. With longer time tests the additional gains are not significant.

(Again, the remark made under (1) should be kept in mind: the general

behavior of the material should be known.)

(4) In many instances observed in the present investigation

creep data (such as 0.1, 0.5 and 1% plastic ,,train) can be extrapolated as

accurately as mpture data. An exception should be made for low strain data

(0.5% or lower) of alloys exhibiting large amounts of primary creep.

(5) The observations made during the present investigation

suggeit the following procedure for a most successful approach to the

extrapolation of rupture and treep data of a specific material:

(a) The creep behavior of the material should be known

in general over the complete range of temperatures of interest, including all

temperaturc s to be included in short time tests.

12



()A large number of date points should be oollticted

wIth test time up to about 1000 hours.

(c) A master curve can be rbtalned using the least-

squares method for the determination of opi !.muin values of the constants.

(cO The actual deterination of a noint on the master

curve should be done on the basis of a statistical analysis of the data at

many different stress level s.

13
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TABLE II: Pre-aration of Metalloaraphi Specimens

Eta.hant for light Etchant for electron
Material microscovy microscoovy

Udimet 500 Modified aqua regia Hydrochloric acid with
4% HNO 3 and 2% H 2 so 4

L-605 Vilella's Reagent
modified with KMnO 4  Same as above
electrolytically

Replica technique was used for electron micrographs: replicas were
shadowed with germanium.

16



TABLE Iz: Sruct•al Chanced in UdImet 500 ]Dwina Lona Time Creep Exposure

A. Test Tenmnerture 1200° F: With rupture lives up to 17,800 hours
no appreciable changes in the size of the O' precipitate
(diameter of particles I1 - .3 micron) or the thickness of grain
boundary areas affected by grain-boundary sliding.

B. Test Temverat'!, 1500* F:

Approximate Approximate averaqe
average diameter width of grain

Stress, Rupture life of 1' particles, boundary area,
pot hours microns , m anS

as received - .1- .3 .3
80,000 1.7 .1- .3 .5- 1
72,000 5.0 .2- .4 .5- 1
60,000 10.5 .2- .4 .5- 1
55,000 33 .2- .4 .5- 1
45,000 159.6 .2- .4 .5- 2
42,500 193.0 .2- .4 .5- 2
39,000 421.2 .2- .4 .5- 2
35,000 441.6 .2- .6 .5- 2
32,500 548.8 .2- .6 .5- 2
30,000 1,255.4 .2- .6 .5- 2
26,000 2,401.1 .2- .6 .5- 2
23,OC 0 7 146.6 .2- 1 .5- 2
19,000 14,773 .2 - 1 1 - 2
18,000 12,880 .2 - 1 1 - 2
16,500 24,733 .2 - 1 1 - 2

1
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TABLE IV: Udimet 500 Constants for Manson-Haford Parameter

Parameter T• log TA

All data log t - ST -0.03226 - -

Data up to 10,00) hrs. -0.01231 - -

Data up to 1,000 hrs. -0.01153 - -

Data up to 200 hrs. " -0.01070 - -

1% PlasI•c Strain

T-TA
Aldata P log t - log TA 200 19.099

Data up to 10,000 hrs. " 200 19.119
Data up to 1,000 hrs. " 200 19.303
Data up to 200 hrs. " - 1000 35.054

0.5% Plastic Strain

All data p T-T 400 16.528
logat -ologoTA.400 16.438

Data up to 10,000 hrs. 400 16.438Data up to 1,000 hrs. "-400 16. 966

Data up to 200 hrs. 0 21.529

0. 1% Plastic Strain

All data P 400 12.260log t - log TA

Data up to 10,000 hrs.
Data up to 1,000 hrs. " 700 12.274
Data up to 200 hrs. - 700 12.341

Ia I



TABLE V: L-605: Constants for Manson-Haford Parameter

Parameter S TA log TA

Rupture Data
All data •=log t - ST -0.01058 - -

Data up to 10,000 hrs. " -0.01068 - -

Data up to 1,000 hrs. " -0.01007 - -

Data up to 200 hrs. " -0.009774 - -

1% Plastic Strain
T -TA

All data p - 200 14.938
log t - logTA

Data up to 10,000 hrs. - 200 14.727

Data up to 1,000 hrs. - 200 14.677

Data up to 200 hrs. - 700 9.582

0.52 Plastic Strain

Adata P log t - log TA 200 11.331
Data up to 10,000 h~rs " - -

Data up to 1,000 his. 700 8.725
Data up to 200 hrs. " 1000 6.054

0,1% Plastic St"ain

Al data = log t -ST -0.006835 -

Data up to 10,000 his. -

Data up to 1,000 hrs. -- -

Data ip to 200 hrs. -0.005809 -

19
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Udlmet 500- 15000 F
Specimen Stress -psi Hours Elong.%

AX 19,000 14,773 12.9
Bx 18,000 12,880 13.0

16C X 16,500 24,'733 6.7
D° 15,000 16,700 0.480
So 13,500 169700 0. 303

XSpecimen ruptured: Total elongation was

measured at room temperature.

14 °Specimen In test: Elongation i3 total plastic
strain us measured in test.

B
A

12

a

Cn
4--

u)

0

,4-

2

0D

Tim - huadso or

o
4--

C

!I

4 I-

2-

0 5 10 15 20 25

Time -Thousands of Hours •

t ~ ~Figure 12. Long time creep: curves for Udimet 500 at 1500°F.
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Photomicrograph I000X

I I'

K ..

:!!t

Electron Micrograph 150900X

Yýgure 15. Micrc=t~a~tures of, Udimet Sf0. Aj received,
aged condition.
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Photomicrograph G00OX

Electron Micrograph 15,OOOX

Figure 16. Microstructures of Udiret 500 specimen after
test at 12000 F and 140,000 psi. Rupture
life, 8.0 hours.
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Photomi czogr~plh 1000X

Electron micrograph 15rOOOX

Figuret 17. H4icrost2ructures of Udiraat 500 specimen after
test at 12000 P and 130rOQOi psi. Rupture
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'hotomicragraph 1000X

Electron Nicrograph 15,00OX
Figure 18. Microstructures of Udimet 500 specimen after

test at 12000 F and 122,000 psi. Rupture
life 37.6 hours.
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4 4

Elcton mi crograph 1000X

FiguKe 19. Microstructureg Of Eldiiut 500 *3P"Mem- after
test at 12~000 F and 117,500 psi. Rupture
life 37.0 hours.
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Photomicrograph IO00OX

Electron micrograph 15,OOOX

Figure 20. Microstructures of Udimet 500 specimei, after
test at 12000 F and 110e0OO psi. Rupture
life 171.9 hours.
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Photomicrograph 100OX

Electron Micrograph 15, 00OX

Figure 21. Microstructures of Udiset 500 speciQen after
test at 12000 F and 103,000 psi. Rupture
lJife 590.4 hours.
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Phntomi crograph 1000X

Electron Micrograph 15, OOOX

Figure 23. Microstructures of Udimet 500 specimen aftcr
test at 12000 r and 95,000 psi. Rupture
life 1396.3 hours.
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Photosi crograph. IOOOX

Eloctron Micrograph 15, 00OX

Figure~ 24. Microstructuros of Udimet 500 specimen after
teaut at 1,2000 F and 90,,000 yisi. Rupture
life 4429.9 hours.
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Photomi crograph 1000X

Electron Micrograph 15,000K

Figvre 25. Microsý,ructures of Udimet 500 tipecimen aftfte:
test at l200ý F and 86,000 psi. RuIturts
life 4(',41.5 hours.
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Eletro M g . I- "

4 t

Phiot omi cr ogr apii 1003X

9I

Electron Micrograph !5,00@0X "
Figure 27., Microstructuros of Udimet 500 specimen after

test :ixt l20Oe F and 77,000 p31. ,.Oupture

life 9l52,.8 hours0
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Photomi crograph 1000X

Electron M~icrograph 15, 00OX

"'igure 32. Microstructures of Udizmet 500 specimen after
test at 15000 F and 55,000 psi. Rupture
life 33.0 hours.
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Pijotomi.crograph 100 OX

Electron Micrograph 15, fOOX

Figure 33. Microstructures of Udimet 500 specimen after
tcst at 15000 F and 45,000 psi. Rupture
iife 159.6 hours.
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Elcrn Micrograph 1"0--0-

lif 19. hour-
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Photnmi crograph 100OX

•toV.
- ar

A- -4I.

44

Elec. ron Micrographl 15, O00X

Figure 35. Microstructur-es of Udimet 300 specimen after
test at 15000 F and 39,000 pai. Rupture
life 42 .2 h u- u .
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'c~ 4

AA

Electron Micrograph 50K

Figure 36. mi crostlt4cturas of, U&:K"awt 500 pcorntE
t,,ft, at 15000 F andti W00!si)uftr
life 441.6 hours.



Phat-mi 4crogiaph I300X

Electron micrograph 15,O00OX
Figuze 37. Hicrostractures of Ud•ime.t 500 specimen after

test at 15000 F and 3•2,SGC psi. Rupture
•e548.8 hlours,
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Ilk"s a*

.4V
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Photomicrograph 1000K

Electron Micrograph 15,0001

Figurv 38. M~icrostructures of Udimet 500 specimen after
test at 150O10 F and 30,000 psi, Rupture
life 1255.4 hoursý
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Photomicrograph iCOOX

4,

4v ~

Is 4

Electron Micrograph 15, OOOX
Figure 39. Microstructuren of Udimet 500 specimen after

test at 15000 F and 26,000 pxJ.. Rupture
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4.y~ ~P4.

ElctonoMicrograph 50O

Figure 40. flicrostructures uf tUdimet f00 upecimen aftcr
teat at 15000 F and 23,000 psi. Rupture
life 7146.6 hours.

59I



04,. ,1

4.' S

Figur 41. -4cotrcue of 4dij §0*seimnafe

tes at 150 F n -900pl utr

lif 1477 hour.
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* .1 • *, r -. " #.42 • •

Photomicrograph i000X

Figure 42. Microstructures of Ma't 500 specimen after
test at 15000 F and 1r,000 psi. Rupture

life 12,880 hours.
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AA, eK A

AL'

Photomicrograph looOX

Electron Nicrograph1500

Figure 43. Hiczrostri~ctures of UWime.t 500 specimen after
test at 15000 F and 16,500 psi. Rupture
life 24,733 hours..
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Photozuicrogr aph lOOOX

Electron Micrograph 15, OOOX

Figure 44. Microstructures of L-605, As received
condition.
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Photom~icrograph l0OOx

Electron M4icrogjraph 15,OOOX

Figure 45. M~icrostructures of L-605 specimen after test
at 12000 F and 65,000 psi. Rupti're life 5.1
hours.
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Photomicrograph i000X

Electron Micrcgr aph 15,000X

Figure 46. Microstructures, of L-.,605 xpectimen after test
at 12000 P and 62,500 psi. Rupture life 8.5
hours.•
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Photomicrograph i00OX

Electron micrograph 15,OCtx
Figure 47. Microstructures of L-605 specimen after test

at 12000 F and 58,000 psi. Rupture life 8.8
hours.
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Photomi crograph 1000X

Electron Micrograph 15, OQOX

Figu~re 48. M4icrostructures of L-603 specimen after test
at 12000 F and 54,000 psi. Rupture life
23.1 hours.
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Electron Mimp.ograph, 15,OOOX

Figure 49. microst~ructures of L-605 speuonien after test
at 12000 F an~d 51#000 pai. Rapture life
6dt -* hours.
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Photomicrograph 1000X

Electron Micrograph 15, OO0X

Figure 50. Microstructures of L-605 specimen after test
at 12000 F and 50,000 psi. Rupture life
51.6 hours.
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Photoicraraph100O

Photiuacc'grpb 100 O

.~A.

Electron Micrograph 15, O0Ox
Figure 51. Imicraomtructures of L-605 specimen after test

at 12000 F and 45,000 psi. Rupture life
136.9 hours..
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Photomic rograph 1000X

Electron klicrograph 15, 000X

Figure 52. vicrostructures of L-605 specimen after test
a.,. 12000 r and 42,500 psi. Rupture life
20i.1 hours.
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Photowicrograph 100OX

Electron Micrograph 15,00OX

Figure 53. Microstructures of L-605 specimen after test
at 12000 F and 41,000 psi. Rupture life
822.8 hours.
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Pkiotoai crograph 1000X

Slectrorv Micrograph 151000X

Figure 54. Microstructures of L-605 specimen after test
at 12000 F and 37P500 psi. Rupture life
1693.6 hours.
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Photomicrograph i00X

Electron micrograph 15,00OX
Figure 55. iLcroutructures of L-605 specimen after test

At 12000 F and 35,000 psi. Rupture life
3445.5 hours.
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Photomicrograph lOQOX

Electron Micrograph 15 ,Oeox
Figure 56. Microstructures of L-605 specimen after test

at 12000 F and 31,000 psi. Rupture life
3294.0 hours.
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Photomi crograph lOOOX

Bleutron, Micrograph 151000X

Figure 57. Microstructures of L-605 specimuen after test
at 12000 F and 29,500 psi. Rupture life
21j,720 hours.
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Photomicrograph IOOOX

Electron Mi crograph l5,OOOX

Figure 58. Microstructures of L-605 specimen after tebt
at 12000 F and 28,000 psi. Rupture life
10,192 hours..
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Photomicrograph 100OX

Electron Micrograph 15,000X
Figure 59. Nicrostructures of L-605 specimen after test

at 15000 F and 37,500 psi. Rupture life 1.7
hours.

78



Photomi crograph lOOOX

Electron M~icrograph 15POOOX
Figure 60. Microstruactures of L-605 specimen after test

at 15000 F and 35,000 psi. RuptlarG life 2.7
hours.
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Photomi ccograph 10P0K

Electron Micrograph 15,000X

Figura 61. Microstructures of L-605 specimen after test
at 15000 F and 30,000 psi. Rupture life
13.0 hours.
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Photewdicrograph 1000X

Eluctr'on Micrograph 15, OGOX
Figure 62. Microstructures cef L-605 specimen after test

at 15000 F and 27,500 psi. Rupt~ure life
25.7 hours.
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Photam~icrograph 1000X

Electron Micrograph 15,OOOX

Figure 65. Ricrostructures of L-605 specimen after test
at 15000 F and 21,500 psi. Rtupture life
301.0 hours.
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Photomicrograph .000X

Electron Nicrograpb 15,000X

Figure 66. H4icromtructurem of L-605 specimen after test
at 15000 F and l8,500 psi. Rupture life
7 48.3 hours.
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Photomi crograph iGOOX

Electron Micrograph l5VOrO0X

Figare 67. IMicrostructures of L-605 specimen after test
at 15000 F and 15,000 psi. Rupture life
3893.8 hours.
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Figure 68. Microstructures of L-605 specimen after test
at 15000 F and 13,000 psi. Rupture life
11,077.5 hours.
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Figure 69. Microstructures of L-605 specimen after test

at 15000 F and 11,500 psi. Rupture life

13,018 hours.
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Figure 70. Kicrostructures of L-605 specimen after test
at l•OO°0 F and 10,500 psi. Rupture life
34,600 hours.
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Figure 71: Manson-Hoford plot, UdOeW 500, rupture.
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Figure 72: Moso-.ufwd plot, Udklmet 500, ruptw'e.
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Figure 74: Manson-Hoferd plot, Udimet 5QQ,rupap~rs
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Figure .75: Monson-Haford plot, UdiWWt ,.00, 1.0% plastIc strain.
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Figure 76: Monson-H•;ord plot, Udimet 500, 1.0% plastic strain.
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Figure 77: Manson-Haford plot, Udimet 500, 1.0% pjasttc strain.
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Figure 78: Manson-Haford plot, Udimet 500,1.0% plastic strain.
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Figure 79: Monson-Hofordc plot, Udimet 500, 0.5% plastic stroin.
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Figure 80: Monson-Haford plot, Udknet 500,0.5% plastic strain.
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Figure 81: Manson-Haford plot, Udimet 500,0.5% plastic strain.

100



200 , 1 1 1 1 1 1 1 1 I '
Udimnet 500

A

100 • 7 C7,400 hrs.

13,800 hrs.

0.5% PlMstic Strain ax
0Io9 tA 16.528

o TA :400 xm

1 0,400 hrs.

S17, 100 hrs.

(I)V

- A - 1200OF

- o - 1350,097

x - 1500 OF

0 - 1650F VO
V - 1800OF
All data points

2 ! I I I I J I, .

-20 -40 -80 -80 -100 -120
P T - TA

p=log t - Ilag tA

Figure 82: Monson-Heford plot, Udimet 500,05% plastic strain.
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Figure 83: Monson-Haford plot, Udlmet 500, 0.1% plastic stroan.

102

_. _



Udimet 500

100 A1kAgk 30ouis
5700 h rs.

0.1% Plastic Strain
log tA = 12.274

_ TA :700 %a

m ( I1100 hrs.

4000 hr-.

X x-- 4200 hra.
Uv-I

10 VV

A - 1200OF 
V -

0o - 150 OF
X - 1500F OF

3 -1650 OF

S- 1800 OF
Data points up to 1000 hrs. i

2 -I I
-20 -40 -60 -80 -100 -120

T - TA

log t - log tA

Figure 84: Manson-Haford plot, UdImet 500,0.1% plastic strain.
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Figure 86: Manson-Haford pIWo, L-OO5, rupture.
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Figuwe 87: Monson-Hoford plot, L-605, rupture.
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Figure 88: Monson-Haford plot, L-605, rupture.
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Figure 8 9S MonSon-Hoford plot, L-605, rupture.
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Figure 90: Monson-Haford plot, L-605, 1.0% plastic strain.
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Figure 91: Manson-HofOrd plot, L-605,1.0%rpIO~tiC Strain.
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Figure 92: Manson-Heford plot, L-605, 1.0% plastic strain.
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Figure 93: Manson-Hoford plot, L-60)5, 1.C% plastic strain.
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Figure 94' Hai-son-Hofotd plct, L- 605, 0.5% plastic strain.
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Figure 95" Hanson-Haford plot, L-605, 0,5% plastic strain,
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